
Donations Documentation
Release 0.1.1

Top Free Games

February 07, 2017

Contents

1 Overview 3
1.1 Features . 3
1.2 Architecture . 3
1.3 The Stack . 3
1.4 Who’s Using it . 4
1.5 How To Contribute? . 4

2 Installing Donations 5

3 Hosting Donations 7
3.1 Docker . 7
3.2 Binaries . 8
3.3 Source . 8

4 Game Configuration 9
4.1 Creating/Updating a Game . 9
4.2 Game Configuration Settings . 9
4.3 Game Items . 10

5 Donations API 13
5.1 Healthcheck Routes . 13
5.2 Game Routes . 13
5.3 Item Routes . 14
5.4 Donation Request Routes . 15
5.5 Donation Routes . 16

6 Indices and tables 19

i

ii

Donations Documentation, Release 0.1.1

Contents:

Contents 1

Donations Documentation, Release 0.1.1

2 Contents

CHAPTER 1

Overview

What is Donations? Donations is an HTTP “resty” API for managing donations of items in games.

Donations allows your app to focus on the interaction required to donating items and keeping players engaged, instead
of the backend required for actually doing it.

1.1 Features

• Multi-tenant - Donations already works for as many games as you need, just keep adding new games;

• Item Donation Management - Donate items to other players and request items from them in return;

• New Relic Support - Natively support new relic with segments in each API route for easy detection of bottle-
necks;

• Easy to deploy - Donations comes with containers already exported to docker hub for every single of our
successful builds. Just pick your choice!

1.2 Architecture

Donations is based on the premise that you have a backend server for your game. That means we do not employ any
means of authentication.

There’s no validation if the actions you are performing are valid as well. We have TONS of validation around the
operations themselves being valid.

What we don’t have are validations that test whether the source of the request can perform the request (remember the
authentication bit?).

1.3 The Stack

For the devs out there, our code is in Go, but more specifically:

• Web Framework - Echo based on the insanely fast FastHTTP;

• Database - MongoDB;

• Locks - Redis.

3

https://github.com/labstack/echo
https://github.com/valyala/fasthttp

Donations Documentation, Release 0.1.1

1.4 Who’s Using it

Well, right now, only us at TFG Co, are using it, but it would be great to get a community around the project. Hope to
hear from you guys soon!

1.5 How To Contribute?

Just the usual: Fork, Hack, Pull Request. Rinse and Repeat. Also don’t forget to include tests and docs (we are very
fond of both).

4 Chapter 1. Overview

CHAPTER 2

Installing Donations

TBW.

5

Donations Documentation, Release 0.1.1

6 Chapter 2. Installing Donations

CHAPTER 3

Hosting Donations

There are three ways to host Donations: docker, binaries or from source.

3.1 Docker

Running Donations with docker is rather simple. Our docker container image comes bundled with the API binary. All
you need to do is load balance all the containers and you’re good to go. The API runs at port 8080 in the docker
image.

Donations uses MongoDB to store clans information. The container takes environment variables to specify this con-
nection:

• DONATIONS_MONGO_HOST - MongoDB host to connect to;

• DONATIONS_MONGO_PORT - MongoDB port to connect to;

• DONATIONS_MONGO_DB - Database name of the MongoDB Server to connect to.

Donations uses Redis for global locks. The container takes environment variables to specify this connection:

• DONATIONS_REDIS_URL - Redis URL to connect to;

• DONATIONS_REDIS_MAXIDLE - Max Idle connection to Redis;

• DONATIONS_REDIS_IDLETIMEOUTSECONDS - Number of seconds to consider a connection idle.

Other than that, there are a couple more configurations you can pass using environment variables:

• DONATIONS_NEWRELIC_KEY - If you have a New Relic account, you can use this variable to specify your
API Key to populate data with New Relic API;

• DONATIONS_NEWRELIC_APPNAME - If you have a New Relic account, you can use this variable to specify
the name of the application to use in your New Relic dashboard;

• DONATIONS_SENTRY_URL - If you have a sentry server you can use this variable to specify your project’s
URL to send errors to.

If you want to expose Donations outside your internal network it’s advised to use Basic Authentication. You can
specify basic authentication parameters with the following environment variables:

• DONATIONS_BASICAUTH_USERNAME - If you specify this key, Donations will be configured to use basic
auth with this user;

• DONATIONS_BASICAUTH_PASSWORD - If you specify BASICAUTH_USERNAME, Donations will be con-
figured to use basic auth with this password.

7

https://newrelic.com/
https://newrelic.com/
https://docs.getsentry.com/hosted/

Donations Documentation, Release 0.1.1

3.1.1 Example command for running with Docker

$ docker pull tfgco/donations
$ docker run -t --rm -e "DONATIONS_MONGO_HOST=<mongoDB host>" -e "DONATIONS_MONGO_PORT=<mongoDB port>" -p 8080:8080 tfgco/donations

3.2 Binaries

Whenever we publish a new version of Donations, we’ll always supply binaries for both Linux and Darwin, on i386
and x86_64 architectures. If you’d rather run your own servers instead of containers, just use the binaries that match
your platform and architecture.

The API server is the donations binary. It takes a configuration yaml file that specifies the connection to MongoDB
and some additional parameters. You can learn more about it at default.yaml.

3.3 Source

Left as an exercise to the reader.

8 Chapter 3. Hosting Donations

https://github.com/topfreegames/donations/blob/master/config/default.yaml

CHAPTER 4

Game Configuration

Being a multi-tenant server, Donations allows for many different configurations per tenant. Each tenant is a different
game and is identified by it’s game ID.

Before any operation can be performed, you must create a game in Donations. The good news here is that updating
games are idempotent operations. You can keep executing it any time your game changes. That’s ideal to be executed
in a deploy script, for instance.

4.1 Creating/Updating a Game

The Update operation of the Game is idempotent (you can run it as many times as you want with the same result). If
your game does not exist yet, it will create it, otherwise just updated it with the new configurations.

To Create/Update your game, just do a PUT request to http://my-donations-server/games/my-game-public-id,
where my-game-public-id is the ID you’ll be using for all your game’s operations in the future. The payload for
the request is a JSON object in the body and should be as follows:

{
"name": [string],
"donationCooldownHours": [int],
"donationRequestCooldownHours": [int]

}

If the operation is successful, you’ll receive a JSON object with the game details.

4.2 Game Configuration Settings

As can be seen from the previous section, there are some configurations you can do per game. These will be thoroughly
explained in this section.

4.2.1 name

The name of your game. This is used mainly for easier reasoning of what this game is when debugging.

Type: string Sample Value: My Sample Game

9

Donations Documentation, Release 0.1.1

4.2.2 donationCooldownHours

Number of hours that must ellapse before a player can donate again. This is used in conjunction with the max donation
weight passed in with the donation.

Type: Integer Sample Value: 24

4.2.3 donationRequestCooldownHours

Number of hours a player must wait before requesting donations again.

Type: Int Sample Value: 8

4.3 Game Items

In order to use donations, the items that can be donated must be previously created for that specific game.

As with the game, creating/updating items can be done idempotently, thus allowing for easier maintenance of a game’s
donatable items.

4.3.1 Creating/Updating an Item

The Update operation of the Item is idempotent (you can run it as many times as you want with the same result). If
your item does not exist yet, it will create it, otherwise just updated it with the new configurations.

To Create/Update your item, just do a PUT request to http://my-donations-server/games/my-game-public-id/items/my-item-key,
where my-game-public-id is the ID of the game you registered in the previous step and my-item-key is the
item key you’ll be using in your game’s donation requests and donations in the future. The payload for the request is
a JSON object in the body and should be as follows:

{
"metadata": [JSON],
"weightPerDonation": [int],
"limitOfItemsPerPlayerDonation": [int],
"limitOfItemsInEachDonationRequest": [int]

}

If the operation is successful, you’ll receive a JSON object with the item details.

4.3.2 Item Configuration Settings

As can be seen from the previous section, there are some configurations you can do per item. These will be thoroughly
explained in this section.

4.3.3 metadata

This sections allow you to store metadata for this item.

Donations treats this as a black box and won’t use it for any operations. It will be returned whenever the item is
returned, though.

Type: JSON Sample Value: { "cost": 100, "currency": "gold" }

10 Chapter 4. Game Configuration

Donations Documentation, Release 0.1.1

4.3.4 weightPerDonation

Donations keep track of the weight that has been donated by player in case you want to limit the max weight donated
per player per time.

This configuration allows you to set different weights per donation per item (epic donations weigh more than rare and
so on).

Type: int Sample Value: 3

4.3.5 limitOfItemsPerPlayerDonation

The limit of items that can be donated by a single player for this item in a single donation request.

Type: int Sample Value: 3

4.3.6 limitOfItemsInEachDonationRequest

The amount of this item that can be donated in a single donation request.

Type: int Sample Value: 8

4.3. Game Items 11

Donations Documentation, Release 0.1.1

12 Chapter 4. Game Configuration

CHAPTER 5

Donations API

5.1 Healthcheck Routes

5.1.1 Healthcheck

GET /healthcheck

Validates that the app is still up, including the database connection.

• Success Response

– Code: 200

– Content:

"WORKING"

• Error Response

It will return an error if it failed to connect to the database.

– Code: 500

– Content:

"Error connecting to database: <error-details>"

5.2 Game Routes

5.2.1 Update Game

PUT /games/:gameID

Updates the game with that has publicID gameID.

• Payload

{
"name": [string], // 2000 characters max
"donationCooldownHours": [int],
"donationRequestCooldownHours": [int]

}

13

Donations Documentation, Release 0.1.1

• Success Response

– Code: 200

– Content:

{
"name": [string], // 2000 characters max
"donationCooldownHours": [int],
"donationRequestCooldownHours": [int]

}

• Error Response

It will return an error if an invalid payload is sent or if there are missing parameters.

– Code: 400

– Content:

{
"success": false,
"reason": [string]

}

– Code: 500

– Content:

{
"success": false,
"reason": [string]

}

5.3 Item Routes

5.3.1 Update Item

PUT /games/:gameID/items/:itemKey

Updates the item with key itemKey in the game with public ID gameID.

• Payload

{
"metadata": [JSON],
"weightPerDonation": [int],
"limitOfItemsPerPlayerDonation": [int],
"limitOfItemsInEachDonationRequest": [int]

}

• Success Response

– Code: 200

– Content:

{
"metadata": [JSON],
"weightPerDonation": [int],
"limitOfItemsPerPlayerDonation": [int],

14 Chapter 5. Donations API

Donations Documentation, Release 0.1.1

"limitOfItemsInEachDonationRequest": [int]
}

• Error Response

It will return an error if an invalid payload is sent or if there are missing parameters.

– Code: 400

– Content:

{
"success": false,
"reason": [string]

}

– Code: 500

– Content:

{
"success": false,
"reason": [string]

}

5.4 Donation Request Routes

5.4.1 Create Donation Request

POST /games/:gameID/donation-requests

Creates a new donation request for the item specified in the payload.

• Payload

{
"item": [string],
"player": [string],
"clan": [string],

}

– item is the key for the item to create the donation request for;

– player is the player id that will receive the donations;

– clan is the team/clan/group the player belongs to. This is useful for grouping donations.

• Success Response

– Code: 200

– Content: Serialized donation request.

• Error Response

It will return an error if an invalid payload is sent or if there are missing parameters.

– Code: 400

– Content:

5.4. Donation Request Routes 15

Donations Documentation, Release 0.1.1

{
"success": false,
"reason": [string]

}

– Code: 500

– Content:

{
"success": false,
"reason": [string]

}

5.5 Donation Routes

5.5.1 Donate to a Donation Request

POST /games/:gameID/donation-requests/:donationRequestID

Donates items to a donation request with public ID donationRequestID in the game gameID.

• Payload

{
"player": [string],
"amount": [string],
"maxWeightPerPlayer": [string]

}

– player is the player id that will receive the donations;

– amount is the quantity of the item being donated by this player;

– maxWeightPerPlayer is the maximum weight this player can donate per time period.

• Success Response

– Code: 200

– Content:

{
"success": true

}

• Error Response

It will return an error if an invalid payload is sent or if there are missing parameters.

– Code: 400

– Content:

{
"success": false,
"reason": [string]

}

– Code: 500

16 Chapter 5. Donations API

Donations Documentation, Release 0.1.1

– Content:

{
"success": false,
"reason": [string]

}

5.5. Donation Routes 17

Donations Documentation, Release 0.1.1

18 Chapter 5. Donations API

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

19

	Overview
	Features
	Architecture
	The Stack
	Who's Using it
	How To Contribute?

	Installing Donations
	Hosting Donations
	Docker
	Binaries
	Source

	Game Configuration
	Creating/Updating a Game
	Game Configuration Settings
	Game Items

	Donations API
	Healthcheck Routes
	Game Routes
	Item Routes
	Donation Request Routes
	Donation Routes

	Indices and tables

