

    
      Navigation

      
        	
          index

        	
          next |

        	Donations 0.1.1
 documentation 
 
      

    


    
      
          
            
  
Donations documentation

Contents:



	Overview
	Features

	Architecture

	The Stack

	Who’s Using it

	How To Contribute?





	Installing Donations

	Hosting Donations
	Docker

	Binaries

	Source





	Game Configuration
	Creating/Updating a Game

	Game Configuration Settings

	Game Items





	Donations API
	Healthcheck Routes

	Game Routes

	Item Routes

	Donation Request Routes

	Donation Routes












Indices and tables


	Index

	Module Index

	Search Page







          

      

      

    


    
         Copyright 2016, Top Free Games.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Donations 0.1.1
 documentation 
 
      

    


    
      
          
            
  
Overview

What is Donations? Donations is an HTTP “resty” API for managing donations of items in games.

Donations allows your app to focus on the interaction required to donating items and keeping players engaged, instead of the backend required for actually doing it.


Features


	Multi-tenant - Donations already works for as many games as you need, just keep adding new games;

	Item Donation Management - Donate items to other players and request items from them in return;

	New Relic Support - Natively support new relic with segments in each API route for easy detection of bottlenecks;

	Easy to deploy - Donations comes with containers already exported to docker hub for every single of our successful builds. Just pick your choice!






Architecture

Donations is based on the premise that you have a backend server for your game. That means we do not employ any means of authentication.

There’s no validation if the actions you are performing are valid as well. We have TONS of validation around the operations themselves being valid.

What we don’t have are validations that test whether the source of the request can perform the request (remember the authentication bit?).




The Stack

For the devs out there, our code is in Go, but more specifically:


	Web Framework - Echo [https://github.com/labstack/echo] based on the insanely fast FastHTTP [https://github.com/valyala/fasthttp];

	Database - MongoDB;

	Locks - Redis.






Who’s Using it

Well, right now, only us at TFG Co, are using it, but it would be great to get a community around the project. Hope to hear from you guys soon!




How To Contribute?

Just the usual: Fork, Hack, Pull Request. Rinse and Repeat. Also don’t forget to include tests and docs (we are very fond of both).







          

      

      

    


    
         Copyright 2016, Top Free Games.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Donations 0.1.1
 documentation 
 
      

    


    
      
          
            
  
Installing Donations

TBW.





          

      

      

    


    
         Copyright 2016, Top Free Games.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Donations 0.1.1
 documentation 
 
      

    


    
      
          
            
  
Hosting Donations

There are three ways to host Donations: docker, binaries or from source.


Docker

Running Donations with docker is rather simple. Our docker container image comes bundled with the API binary. All you need to do is load balance all the containers and you’re good to go. The API runs at port 8080 in the docker image.

Donations uses MongoDB to store clans information. The container takes environment variables to specify this connection:


	DONATIONS_MONGO_HOST - MongoDB host to connect to;

	DONATIONS_MONGO_PORT - MongoDB port to connect to;

	DONATIONS_MONGO_DB - Database name of the MongoDB Server to connect to.



Donations uses Redis for global locks. The container takes environment variables to specify this connection:


	DONATIONS_REDIS_URL - Redis URL to connect to;

	DONATIONS_REDIS_MAXIDLE - Max Idle connection to Redis;

	DONATIONS_REDIS_IDLETIMEOUTSECONDS - Number of seconds to consider a connection idle.



Other than that, there are a couple more configurations you can pass using environment variables:


	DONATIONS_NEWRELIC_KEY - If you have a New Relic [https://newrelic.com/] account, you can use this variable to specify your API Key to populate data with New Relic API;

	DONATIONS_NEWRELIC_APPNAME - If you have a New Relic [https://newrelic.com/] account, you can use this variable to specify the name of the application to use in your New Relic dashboard;

	DONATIONS_SENTRY_URL - If you have a sentry server [https://docs.getsentry.com/hosted/] you can use this variable to specify your project’s URL to send errors to.



If you want to expose Donations outside your internal network it’s advised to use Basic Authentication. You can specify basic authentication parameters with the following environment variables:


	DONATIONS_BASICAUTH_USERNAME - If you specify this key, Donations will be configured to use basic auth with this user;

	DONATIONS_BASICAUTH_PASSWORD - If you specify BASICAUTH_USERNAME, Donations will be configured to use basic auth with this password.




Example command for running with Docker

    $ docker pull tfgco/donations
    $ docker run -t --rm -e "DONATIONS_MONGO_HOST=<mongoDB host>" -e "DONATIONS_MONGO_PORT=<mongoDB port>" -p 8080:8080 tfgco/donations










Binaries

Whenever we publish a new version of Donations, we’ll always supply binaries for both Linux and Darwin, on i386 and x86_64 architectures. If you’d rather run your own servers instead of containers, just use the binaries that match your platform and architecture.

The API server is the donations binary. It takes a configuration yaml file that specifies the connection to MongoDB and some additional parameters. You can learn more about it at default.yaml [https://github.com/topfreegames/donations/blob/master/config/default.yaml].




Source

Left as an exercise to the reader.







          

      

      

    


    
         Copyright 2016, Top Free Games.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Donations 0.1.1
 documentation 
 
      

    


    
      
          
            
  
Game Configuration

Being a multi-tenant server, Donations allows for many different configurations per tenant. Each tenant is a different game and is identified by it’s game ID.

Before any operation can be performed, you must create a game in Donations. The good news here is that updating games are idempotent operations. You can keep executing it any time your game changes. That’s ideal to be executed in a deploy script, for instance.


Creating/Updating a Game

The Update operation of the Game is idempotent (you can run it as many times as you want with the same result). If your game does not exist yet, it will create it, otherwise just updated it with the new configurations.

To Create/Update your game, just do a PUT request to http://my-donations-server/games/my-game-public-id, where my-game-public-id is the ID you’ll be using for all your game’s operations in the future. The payload for the request is a JSON object in the body and should be as follows:

    {
      "name":                          [string],
      "donationCooldownHours":         [int],
      "donationRequestCooldownHours":  [int]
    }





If the operation is successful, you’ll receive a JSON object with the game details.




Game Configuration Settings

As can be seen from the previous section, there are some configurations you can do per game. These will be thoroughly explained in this section.


name

The name of your game. This is used mainly for easier reasoning of what this game is when debugging.

Type: string

Sample Value: My Sample Game




donationCooldownHours

Number of hours that must ellapse before a player can donate again. This is used in conjunction with the max donation weight passed in with the donation.

Type: Integer

Sample Value: 24




donationRequestCooldownHours

Number of hours a player must wait before requesting donations again.

Type: Int

Sample Value: 8






Game Items

In order to use donations, the items that can be donated must be previously created for that specific game.

As with the game, creating/updating items can be done idempotently, thus allowing for easier maintenance of a game’s donatable items.


Creating/Updating an Item

The Update operation of the Item is idempotent (you can run it as many times as you want with the same result). If your item does not exist yet, it will create it, otherwise just updated it with the new configurations.

To Create/Update your item, just do a PUT request to http://my-donations-server/games/my-game-public-id/items/my-item-key, where my-game-public-id is the ID of the game you registered in the previous step and my-item-key is the item key you’ll be using in your game’s donation requests and donations in the future. The payload for the request is a JSON object in the body and should be as follows:

    {
      "metadata":                           [JSON],
      "weightPerDonation":                  [int],
      "limitOfItemsPerPlayerDonation":      [int],
      "limitOfItemsInEachDonationRequest":  [int]
    }





If the operation is successful, you’ll receive a JSON object with the item details.




Item Configuration Settings

As can be seen from the previous section, there are some configurations you can do per item. These will be thoroughly explained in this section.




metadata

This sections allow you to store metadata for this item.

Donations treats this as a black box and won’t use it for any operations. It will be returned whenever the item is returned, though.

Type: JSON

Sample Value: { "cost": 100, "currency": "gold" }




weightPerDonation

Donations keep track of the weight that has been donated by player in case you want to limit the max weight donated per player per time.

This configuration allows you to set different weights per donation per item (epic donations weigh more than rare and so on).

Type: int

Sample Value: 3




limitOfItemsPerPlayerDonation

The limit of items that can be donated by a single player for this item in a single donation request.

Type: int

Sample Value: 3




limitOfItemsInEachDonationRequest

The amount of this item that can be donated in a single donation request.

Type: int

Sample Value: 8









          

      

      

    


    
         Copyright 2016, Top Free Games.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          previous |

        	Donations 0.1.1
 documentation 
 
      

    


    
      
          
            
  
Donations API


Healthcheck Routes


Healthcheck

GET /healthcheck

Validates that the app is still up, including the database connection.


	Success Response


	Code: 200



	Content:

  "WORKING"











	Error Response

It will return an error if it failed to connect to the database.


	Code: 500



	Content:

  "Error connecting to database: <error-details>"


















Game Routes


Update Game

PUT /games/:gameID

Updates the game with that has publicID gameID.


	Payload

{
  "name":                          [string],  // 2000 characters max
  "donationCooldownHours":         [int],
  "donationRequestCooldownHours":  [int]
}







	Success Response


	Code: 200



	Content:

{
  "name":                          [string],  // 2000 characters max
  "donationCooldownHours":         [int],
  "donationRequestCooldownHours":  [int]
}











	Error Response

It will return an error if an invalid payload is sent or if there are missing parameters.


	Code: 400



	Content:

{
  "success": false,
  "reason": [string]
}







	Code: 500



	Content:

{
  "success": false,
  "reason": [string]
}


















Item Routes


Update Item

PUT /games/:gameID/items/:itemKey

Updates the item with key itemKey in the game with public ID gameID.


	Payload

{
  "metadata":                           [JSON],
  "weightPerDonation":                  [int],
  "limitOfItemsPerPlayerDonation":      [int],
  "limitOfItemsInEachDonationRequest":  [int]
}







	Success Response


	Code: 200



	Content:

{
  "metadata":                           [JSON],
  "weightPerDonation":                  [int],
  "limitOfItemsPerPlayerDonation":      [int],
  "limitOfItemsInEachDonationRequest":  [int]
}











	Error Response

It will return an error if an invalid payload is sent or if there are missing parameters.


	Code: 400



	Content:

{
  "success": false,
  "reason": [string]
}







	Code: 500



	Content:

{
  "success": false,
  "reason": [string]
}


















Donation Request Routes


Create Donation Request

POST /games/:gameID/donation-requests

Creates a new donation request for the item specified in the payload.


	Payload

{
  "item":      [string],
  "player":    [string],
  "clan":      [string],
}






	item is the key for the item to create the donation request for;

	player is the player id that will receive the donations;

	clan is the team/clan/group the player belongs to. This is useful for grouping donations. Leave this empty if player does not belong to a team/clan/group.





	Success Response


	Code: 200

	Content: Serialized donation request.





	Error Response

It will return an error if an invalid payload is sent or if there are missing parameters.


	Code: 400



	Content:

{
  "success": false,
  "reason": [string]
}







	Code: 500



	Content:

{
  "success": false,
  "reason": [string]
}


















Donation Routes


Donate to a Donation Request

POST /games/:gameID/donation-requests/:donationRequestID

Donates items to a donation request with public ID donationRequestID in the game gameID.


	Payload

{
  "player":                 [string],
  "amount":                 [string],
  "maxWeightPerPlayer":     [string]
}






	player is the player id that will receive the donations;

	amount is the quantity of the item being donated by this player;

	maxWeightPerPlayer is the maximum weight this player can donate per time period.





	Success Response


	Code: 200



	Content:

{
  "success": true
}











	Error Response

It will return an error if an invalid payload is sent or if there are missing parameters.


	Code: 400



	Content:

{
  "success": false,
  "reason": [string]
}







	Code: 500



	Content:

{
  "success": false,
  "reason": [string]
}





















          

      

      

    


    
         Copyright 2016, Top Free Games.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	Donations 0.1.1
 documentation 
 
      

    


    
      
          
            

Index



 




          

      

      

    


    
         Copyright 2016, Top Free Games.
      Created using Sphinx 1.3.5.
    

  _static/down.png





_static/minus.png





search.html


    
      Navigation


      
        		
          index


        		Donations 0.1.1
 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2016, Top Free Games.
      Created using Sphinx 1.3.5.
    

  

_static/comment-close.png





_static/up.png





_static/comment-bright.png





_static/up-pressed.png





_static/file.png





_static/plus.png





_static/comment.png





_static/ajax-loader.gif





_static/down-pressed.png





benchmark.html


    
      Navigation


      
        		
          index


        		Donations 0.1.1
 documentation »

 
      


    


    
      
          
            
  
Donation’s Benchmarks


You can see donations’s benchmarks in our CI server [https://travis-ci.org/topfreegames/donations/] as they get run with every build.



Creating the performance database


To create a new database for running your benchmarks, just run:


$ make drop-perf migrate-perf









Running Benchmarks


If you want to run your own benchmarks, just download the project, and run:


$ make run-test-donations run-perf









Generating test data


If you want to run your perf tests against a database with more volume of data, just run this command prior to running the above one:


$ make drop-perf migrate-perf db-perf






Warning: This will take a long time running (around 30m).





Results


The results should be similar to these:















          

      

      

    


    
        © Copyright 2016, Top Free Games.
      Created using Sphinx 1.3.5.
    

  

